
[SSRE’93 Tutorial Proposal

Denver, Colorado

November, 1993

Software Reliability Modeling Techniques and Tools

Michael R. Lyu

Bell Communications Research
445 South Street

Momstown, NJ 07962
(201)829-3999

(201)829-5981 (fax)
<lyu@bei/core. corn>

Allen P. Nikora

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 97709

(818)354-9694
(878)393-7362 (fax)

<bignuke@spa I.jp[.nasa.gov>

Half-Day Tutorial Agenda

Part I: Introduction (20 nzimxtes,)

Part H: Survey of Software Reliability Models (60 minutes)

Part III: Quantitative Criteira for Model Selection (20 minutes)

Part IV: Linear Combination NIodeling Approach (20 minutes)

Part V: Software ReIiabiIity ModeIing Took (120 minutes)

Total time: 240 minutes

IMRE”93 Tutorial

Software Reliability LModeling Techniques and Took

Part I: Introduction

1. Definitions
2. lNlodeting principles
3. ReliabiIitv theorv
4. Benefits “ -

Total time: 20 minutes

SOFTWARE RELIABILITY

DEFINITION:

“[Software Reliability] is the Probability of Failure-Free

Operation of a Computer Program for a Specified Time

in a Specified Environment.”

lEEE STANDARD

●

●

Reliability Measurement Definition
and Goal

Reliability measurement is a set of mathematical techniques that can be used
to estimate and predict the reliability behavior of software during its
development and operation.

The primary goal of software reliability modeling is to answer the following
question:

Given a system, what is the probability that it will fail in a given time interval,
or, what is the expected duration between successive failures?

v
~ g
0=

E c-)
a.) -uI x“’

a)

+4

u
o.—
%

cncJ.—
>

.—
a) -E

E
al
E
c

.—w
Q)
L

.—

o
L .—

>
c
CD

6
E

al
Q

.— .

U5”
-c
E
o
E

*.
●

CD

3
E
CD
z

c
3

E

U3xo
E

a)
c(n

a)

E
a)

I
CD

E
c
o
L

.—

.—

L
a.)
E’

L.X2 a)
E
CJ

a.)
E.—
c
m
CD
2

●

.0 c1)
X2
E

>
J.-4 L -L-> “- .—.- Cx

a)
c

a)
L

.— (J .—
cD–– x

WI
co

1-1- 1Cil
●

I
●●

c
Q

m
%

E.-jj . .
(/).-

Z.- . .
(/).—

B’ z=’ z=’
A
tA
n.
II
~

z

a).-
(U E.— -?$

83tJ
n.-

.—
3

.-

F
+-J.— II

II 0
m-

Qa
D-

h
. -—
E
(u Ea)

M
c1)

2>

E ‘5

m
u).-

F-: LL

m

o

as
● ✍

5’

L
3“=s
Shl)

II

7s
“*
s
0

CJ

C&

0
-E.—

‘5
c
En
c
a)—

(n
(u

I

+
-b-J

Z’
E;.—
—it’
II II

E
a.).+ s-0
co(l)
>(/)
(.03

p

.— 1.

-c
~
a)
-E.—

Relationship Between Reliability Measures

A reliabi. ity objective expressed in terms of one re
cm be easily converted nto other

p(t) = A’t

MTTF = l/Z

A = l/MTTF

re
iability measure

iability measures as follows:

R(t) = exp(-u(t))

Qas
9-

——— .-—. ——— ——— .

——— -. --— —-—— ——.

—..——

—

I

——-.

—

.6,

.:

t-

BASIC IDEAS ON SOFTWARE RELIABILITY
MEASUREMENTS

FAILURE
RATE

PRESENT

OBJECTWE

. ——

——. ——. ——— ——
I

,

PRESENT
ADDI+1ONAL

EXECUTiOhi TME

mc
o.-
(n.—
0

-%

ti
a.)+.-

(D
u)
3

CJ
U).-

.
CDto

%

E
(u
u)c.—
Q

2
CL

4
a)
t)
L
3
0to
y

6
-iii
um

0
m

U)c.—
L

-sa
m

>
.-—.—
Ja

‘5 g)
.—
-5

0.-
-&u.-

$
. -
-t5
a)

a)
L

Q
Q
(u u.(U

3
0

.—
xl
0

m
.5
aJa)

%
E.-
-5 Q,, ,,,

●

Benefits (cent’d)

● Risk Assessment

Determine whether the system is ready for release

Determine confidence about system correctness

Estimate failure behavior during system operation

● Other Management Decisions

- Criteria for evaluating new technology or features added to the system

ISSW’93 Tutorial

Software ReIiabilitv ~Modeling Techniques and TookJ

Part 11: Survey of Software Reliability Models

1. Criteria for evacuating software reliability modek
2. Software reliabilitv estimation models w

3. Software reliabilit; prediction modek.

Total time: 60 minutes

I

I

(1)

(2)

()3

(4)

(5)

(6)

Criteria for Evaluating Software Reliability lModels

lModel va~idity:

● measurement accuracy for current failure rate
. prediction of the time to finish testing with associated date and cost
. prediction of the operationa~ failure rate

Ease of measuring parameters

. cost, schedu~e impact for data collection

. phvsical significance of parameters to software development process4

Qualitv of assumptionsd

. c~oseness to the real world

. adaptability to a special environment

Applicability (abilitvd
environment;)

to handle program evolution and change in test and operational

Simplicitv in concept, data coHection, program implementation, and validationJ

Insensitivity to noise (insignificant changes) in input data and parameters without los-.
ing responsiveness to significant differences

Software Reliability Estimation Models

Definition of Estimation:
Apply statistical inference procedures to failure data taken from
software testing to determine software reliability.

Available Models:

Jelinski-Moranda Model

Generalized Poisson Model

Geometric Model

Schneidewind Model

Non-homogeneous Poisson Process Models

Muss Calendar Time Model

Brooks and Motley Binomial .Model

Littlewood-Ve~aH Bavesian Model4

Software Reliability Prediction lModeIs

Definition of Prediction:
Determine software reliability from properties
duct and the development process even without

of the software pro-
software execution.

Available Models:

● Rome Air Development Center (RADC) Model

● SoftWare Early Error Prediction (SWEEP) Model, also known as
Phase-Based .Model

U)
a)

E

a)
7

‘5

u
r
m
s
u)
CI.—
z

z
h

ii
z
c
0

a)
m
3

0

‘z-’
as

;

—
-p

c

a)

,E
C
m
L

c.—
u
1?
U).-
Zi

-&!

g
.—

a)

:
.—

-u

a)

-0
c

?
0
0

(n.-

E
y)
‘ s
m
E
0
0

.6

c.—
u
2
U).-
Zi
ii

,

● ●

Jelinski-Moranda/Shooman (cent’d)

Assumptions:

1. The number of errors in the code is fixed.

2. No new errors are introduced into the code through the correction process.

3. The number of machine instructions is essentially constant.

4. Detections of

5. The software
usage.

errors are independent.

is operated in a similar manner as the anticipated operational

6. The error detection rate is proportional to the number of errors remaining in
the code.

Jelinski-lWloranda/Shooman (control)
Let T represent the amount of debugging time spent on the system since the
start of the test phase.

From assumption 5, we have:

z(t) = K&(t)

where K is the proportionality constant, and &r is the error rate (number of
remaining errors normalized with respect to the number of instructions).

IT

ET= number of errors initially in the program

IT= number of machine instructions in the program

EC= cumulative number of errors fixed in the interval [0, ~] (norms
number of instructions).

ized by the

JelinskHVloranda/Shooman (cent’d)

ET and IT are constant (assumptions 1 and 3).

No new errors are introduced into the correction process (assumption 2).

As ~ + ~, SC(T) + ET/lT, so ~r(~) -+ O.

The hazard rate becomes:

z(t)= K{+T)}

o

a)
-3

c
0.--u
c

—
E
m
a)
L

2
t--

II
#-J

Z
ii.—

1-1-m

c
0.—
u)
U)
a)
b-X
a)

1-

a)
-3

-u
a)
5
E.—

-G
a)

c!) .—

-R
E.—

Ii
a.)
-0
0
0

E,—
0
Q
m.—
K

a)x.-—

E

.—is
‘E
m
c.-
m
3

u)
-E
?
a)
L.—

3-
;

n

-u
s
m

.
$
E.—

u
E
a)

L

Q

u

E
5
c.—

m
L

u)
c
3
L

v)
0.)

-6o n
“r ~

c1)
Q II

r

$!.—
cl-
(-)

E.
m

-p

0
L)
a)
L

m
c.—

-%

-c
0
m
a)

E
as
b)
0
L

.
N

c.—

a
L
a)
s
a)

c!)

d=
p
c.)
L.—
<

-u
a)u)o
Q

a)c
0

u)
2
g
alc
as
u).-
5
us

.-

57

0

(i)
L

(n

-0

E

E
al
+
‘-w
c
3
0
0

.
(i
a)
c)c
(u
-G
E
iii
L.-
0

z
-u
0

E

● ●

Generalized Poisson Model (mnt’d)
Assumptions:

1. The expected number of errors occurring in any time interval is proportional
to the error content at the time of testing and to some function of the amount
of time spent in error testing.

2. All errors are equally likely to occur and are independent of each other.

3. Each error is of the same order of severity as any other error.

4. The software is operated in a similar manner as the anticipated usage.

5. The errors are corrected at the ends of the testing intervals without
introduction of new errors into the program.

Generalized Poisson Model (cent’d)
Construction of Model:

● Given testing intervals of length XI, X2,...,Xn

● fi errors discovered during the i’th interval

● At the end of the i’th interval, a total

First assumption of the model yields:

E(fi) = 4(N - Mi-l)gi (XI, x2, xi)

of Mi errors have been corrected

where

b is a proportionality constant

N is the initial number of errors

gi is a function of the amount of testing time spent, previously and currently. g, is
usually non-decreasing. If gi (xI, x2, xi) = xi, then the model reduces to the

Jelinski-Moranda model.

Q
U)
U)

■ -
0
L
=
a)
N

D -

. .C/3
G=

●

E.—
0
.-

.—
3
0
0

-u
a)
“s
N
-g

(u

u)
c
0.—
Ii
E
xU)
$

n
~

-

c l=!”II.-

...

‘R
....

5)
r’-

c DII,-
11

II

11

2’
-6
Y
c“
0

-(3
00
c.-

●

—.u=

I

5-)
t’.

I

I
.-.m
c

+

I

z
F—
Q=.

c w.!

s
0

u)
U)

● -
0

CL
7sa
N
B-

cJ-
0

L.—
m
Q

:
.-

●

5’)

.-

11

<z
\
4=

Geometric Model

● Proposed by Moranda in 1975 as a variation of the Jelinski-Moranda model.

● Unlike models previously discussed, it does not assume that the number of
errors in the program is finite, nor does it assume that errors are equally
likely to occur.

● This model assumes that errors become increasingly difkult to detect as
debugging progresses, and that the program is never completely error free.

Assumptions:

‘1.

2.

3 .

4.

5.

Geometric Moclell (cent’d)

There are an infinite number of total errors.

All errors do not have the same chance of detection.

The detections of errors are independent. I

The sotiare is operated in a similar manner as the anticipated operational
usage.

The error detection rate forms a geometric progression and is constant
between error occurrences.

Geometric Model (cent’d)

The above assumptions result in the fol[owing hazard rate: I

z(t) = D(j) ‘-’
for any time “t” between the (i - I)st and the i’th error.

The initial value of z(t) = D

A

73
“*c
o

c
CL
as
La c)

■ ✍

L

al)
E
0a

c!)
-p

d!?
N(IS
~L

1

c1

—. ——

—.

n
-t––+––

a)
E.-

$4

“--e
c1

~1

“--e
n

T-
.J.

.-
I

-0”
n

II

--.-

2’
a.)
>0
c.)(n
5
c0

c.-
(l)
0-)
cm

+

z

c.-
(D
p

(u

Geometric Model (cent’d)
● From assumptions 3 and 5,

f(X,) = D6b’exp(-D~ ‘-’ X,)

where Xi = ti - tkl

● Likelihood function for Xi is written as:

L = ~J(Xi) = D“ fi$i-’ exp(-Di>l @’-’Xi)t=!

In(L) = nlnD +,$ (i - I)ln$ - & () ’-’Xi
i=f

a)

0
● -
L

a)
E
o
a)

c!)

g

w
c
o.-

5
-q

c
:
.-

n

ti
- J
z

0
II

x
r-

1

1

0
II

CN
1

--G

I

+J
t3”-

1

I

11

-u
●

CN

.-

x.-

a.)
i%
c

<-e
< n
II

11
< n

g

< w

Geometric Model (cent’d)

Because of the first assumption (the number of errors in the program is
infinite), the number of errors in the program cannot be estimated.

However, a “purification level” after n errors have been observed can be
defined by:

Z(t) “ Z(tl) D-D~
= A-6”

z(tQ) D

Schneidewind Model

● Proposed by Norman Schneidewind in 1975.

● Model’s basic premise is that as the testing progresses over time, the error
detection process changes. Therefore, recent error counts are usually of
more use than earlier counts in predicting future error counts.

● Schneidewind identifies three approaches to using the error count data.
These are identified in the following slide.

Schneidewind Model (cent’d)
● First approach is to use all of the error counts for all testing intervals.

Schneidewind argues that this approach is applicable when it is felt that the
error counts from all of the test intervals are useful in predicting future error
counts.

● Second approach is to use only the error counts from test intervalss
through m and ignore completely the error counts from the firsts -1 test
intervals, assuming that there have been m test intervals to date. This
approach is to be used when it is felt that there has been a significant
change in the error detection process in the last m - s + 1 intervals.

● Third approach is a hybrid approach which uses the cumulative error count
for the firsts -1 intervals and the individual error counts for the last m -s +
1 intervals. This approach is to be used when it is felt that the combined
error count from the firsts -1 intervals and the individual error counts for
the last m -s + 1 intervals are representative of the error detection behavior
for future testing intervals.

Schneidewind Model (cent’d)
Assumptions:

The number of errors detected in one interva
count in another.

is independent of the error

2.

3.

4.

5.

The error correction rate is proportional to the number of errors to be
corrected.

The software is operated in a similar manner as the anticipated operational
usage.

The mean number of detected errors decreases from one interval to the
next.

The intervals are all of the same length.

u)
c
0
0-

E

2
m
c

.—
g

Q

0

u)
(.0U)
a)
0
0
k

,CD

m
● -
-E
a)
c

g

a.)

ii.-

(D
0)
c
m

Qmti

E

a)
L
m
0
A

uc
as

0
A
6
a)
L
cl)

-$

‘2

a)
73
Q

ZE!

G.-

E
(n
co
m
E
0
t

&

CL
3

II
n

ii.-

a)

E
i?
c
m
a)
E

.

76
2
a)
F.-

I

I

II
T-

,

n
I

●

I

0
. .

..&A
:>

“F?)
u).—

a
=
o

D c..- ,

If
s!.- Kf

E
VI
u)
VI
w

‘5
L
a)-e

3
a)
73

Q

c (J-JE II
.- E

I
Q)

-c
to.-
0

!“
t-
1

- .

r-
?

2

a) I

s
P.-f-

E II
T-

1II

●

Schneidewind Model (cent’d)
● Assuming a Poisson

FS-I m
~.? (-Ms .

‘) rI
Fs-I! l - s.-

process, the likelihood function is given by:

fi
P,

f!

where Ms- 1 is the mean number of errors in W’ interval 1 through S -1,
Sfwith s chosen such that 2< S s m and Fs - I =i i.

f?li = ~exp[-~(i - 1)(1 - exp(-~)]

MS- I = &l - exp(-S(S - 1)~)]

Schneidewind Model (cent’d)
● Determination of MLEs for u and ~ is done by solving the following system

of equations:

~ = [n(y), where y is the solution to:

(S - I)Fs-I ~- ~Fm =A
Y y-l yin-l

m-s

A=~{s+i-l)fs+i
m

Fs, m=~fi

A

(;f)pl=li
;=

‘1 - eXp(-~M)

Schneidewind Model (cent’d)
● Once the MLEs have been obtained, the following estimates can be made:

Expected number of errors in (m - I)st testing interval

=mi+q= ~ [exp(-~(i - 1)) - exp(-p~)]
P

--

Time to detect a total number, M, of errors

“0-

Correction rate for the i’th interval

= aexp(-~(i - ‘i))

where 2i is the time lag between error detection and correction

Nonhomogeneous Poisson Process

● Proposed by Amrit Goel of Syracuse University and Kazu Okumoto in 1979.

--

● Model assumes that the error counts over non-overlapping time intervals
follow a Poisson distribution.

● It is also assumed that the expected number of errors in an interval of time
is proportional to the remaining number of errors in the program at that
time.

INHPP (corm)
Assumptions:

7.

2 .

3.

4.

The software k operated in a similar manner as the anticipated operational
usage.

The numbers of errors, (f?, fz, fs,..., f~) detected in each of the respective time
intervals [(0, h), (t~, k),..., (tl,tm)])] are independent for any finite collection of
timest~ Ct2 K . . . K tm.

Every error has the same chance of being detected and is of the same
severity as any other error.

The cumulative number of errors detected at any
Poisson distribution with mean m(t). m(t) is such

time t, N(t), follows a
that the expected number

of error occurrences for any time (t, t + ‘t), is proportional to the expected
number of undetected errors at time t.

.—

73
“-c
c)—
C3

. .

e
E
0
0
u)
c
0.-
-&
E
ii!
2

0

W.—

%

u
c1)
g
Q
x
a.)
a)

-b--

c
0

m
c.—
m
m
a)
b
a)

0
II

[.1
II

u“
a)

o
II

as
II

i-m
ti

u
c1)
5
a)
Iiim

c

u).—
Cu
$)
a)

-5

m
c.-
-v)
$

● Assumptions
t, t + 2t as:

NHPP (CO1’1~’~)

4 and 5 give the number of errors d scovered in the interva

m(t + 2t) - m(t) = b((a - m(t))2t + 02t.

where
b is a constant of proportionality

a is the total number of errors in the program

m(t + 2t) - m(t) = b((a - m(t))2t + 02t

2t 2t

m’(t) = ab - bin(t) Iim ~~ = O

IVFIPP (cent’d)
● Solving the above differential equation gives:

m(t) = a(l - e-b~)

which satisfies the initial conditions m(0)

● For fi = N(ti) - N(ti-~) and the error counts
the likelihood function is:

n
[(M(ti) - m(ti - I)] eXp(M(ti -7) - M(ti))

n
i=l fi!

n
[a(e

-btr - f

II

- e ‘bt’)] exp(a(e -b~- ~ -btl - I
))

i=l fi!

= O, m(~) = a

being independent of one another,

NHPP (COi’lt’Ci)

● MLEs for a and b are given by the following system of equations:

m

8=
i~fi

(1 - e-8’m)

-bll m -h, -’h -1
xtme i

m f,(tie - ti-le
x

1 -e-stm = ‘=1 e-bt’~’ e-b”

P.—>
2

3
0

.—

E.-
3
cl-
(“)

m
L

.-

IiJ
c

+.-

E.—am.—
.—

0.

E.-

%5 —
%
3-E

2
E
al

u)
3
“o
.’g

K1m
(3

-G
E ‘55

mu)3

u).-

:
.-Cn +.-

c) s

● ●● ●

IVlusa Calendar Time (cent’d)
● Muss’s basic model is essentially the same as the Jelinski-Moranda model

● The importance of the calendar component of the model is:

Development of resource allocation (failure identification staff, failure
correction staff, and computer time)

Determining the relationship between CPU time and wall clock time

Let rtd~~ = instantaneous ratio of calendar to execution time resulting
from effects of failure identification staff

Let ~tF/cT = instantaneous ratio of calendar to execution time resulting
from effects of failure correction staff

Let ~td:z = instantaneous ratio of calendar to execution time resulting
from effects of available computer time

Muss Calendar Time (cent’d)
Q Increment in calendar time is proportional to the average amount by which

the limiting resource constrains testing over a given execution time
segment:

T2

R2 t= ‘x(
T?

ml

● Resource requirements associated with a change
be approximated by:

2XK = 0K2T + UK2mb

2~ = execution time increment

2m = increment of failures experienced

in MTBF from ~1 to zz can

~K = execution time coefficient of resource expenditure (e.g 100
CPU time per hour of failure identification staff)

seconds of

~K = failure coefficient of resource expenditure (e.g. I failure detected for
every ‘1.4 hours of failure identification staff)

IWlusa Calendar Time (cent’d)
● Given PK represents the number of available personnel (failure identification

or failure correction, K = I or F) or available number of computer shifts (K= C)

f3K = utilization factor for K’th resource. We assume pI = 1.

~F assumes that error correction is a Poisson process, with servers randomly
assigned in time. This determines the length of the error queue, Q, which in
turn determines ~F.

~F = (1 - e flpF) VQ

Effective amount of K’th resource = ~K PK.

● Correspondence between resources and

T2

MTo
G

9KT + CpK
‘T =

c max[
PKOKT

]dT

calendar time is:

TI
I

IVksa Calendar Time (cent’d)
I

● Correspondence between resourced and calendar time is:

where:

T O = initial M T B F

M = number of failures required to be experienced before all errors
in the program have been uncovered

TK~, TW = MTBF at the boundary of above periods

IIVlusa
● Boundaries are

Calendar Time (cent’d)
M, T2 and the transition points:

n \

HqXIWK - PKpKWK

Transition points are the values of T at which the derivative of calendar time
with respect to execution time for one resource becomes greater than
another.

● The limiting resource, K, for a given MTBF, T, is the one that maximizes:

eKT + CpK

PKpKT

Brooks and Motley Models

● Published by Brooks and Motley of IBM in 1980.

● Models attempt to account for the following:

During a given testing period, not all of the program is tested equally.

During a given development period, only some portion or modules may
be available for test.

When errors are corrected, additional errors may be introduces as part
of the correction that was made.

Brooks and Motley Models (cent’d)

Assumptions:

1. The number of errors detected on each test occasion is proportional to the
number of errors at risk for detection. This, in turn, is proportional to the
remaining number of errors.

2. The proportionality factor or probability of detecting any error during a
specified unit intewal of testing is constant over all occasions and
independent of error detections.

3. The errors reintroduced in the correction process are proportional to the
number of errors detected.

Brooks and Motley (cent’d)
Binomial Model

● Given that the j’th module from a program is tested for the
first time. From assumptions 1 and 2, the expected
number of errors for the 1st interval is:

Illj = ~jNq where

(,i)j = weight assigned to module j (module
total code size)

size divided by the

N = the number of errors initially in the system

q = the error detection probability (from assumption 2)

● For the second interval of testing on module j, the
expected number of errors detected is:

q[(i)jN - (i)jNq] = [~jN(l - q)]q

● For the i’th interval, the expected number of errors
detected is:

i - 1

~jN(l - q) 1

.

Brooks and Motley (cent’d)
Binomial Model

● The total number of errors expected for the first testing
occasion is:

Kfj
i -1

K~j = number of unit intervals making up the first test occasion

~lj : [1 - (1 - q)K’j]

Brooks and Motley (cent’d)
Binomial Model

● When testing module j for the second test occasion, the
number of errors at risk is:

~jN - n~j + rnlj where.-
rmj = the number of new errors introduced into the

module as a result of previous corrections

(from assumption 3)

● The total number of errors in the second test

nzj = (~jN - ~nlj)qzj where

u = 1- r: the probability of correcting

without introducing new errors

period is:

code

Brooks and Motley (cent’d)
Binomial Model

● For the i’th testing period, the expected number of errors
detected is: ‘-

nij = (~jN - ~Ni - 1, j)qij = ~ijqijwhere

— i - l

N ij ~ (~jN - aNi-l, j) and Ni-l, j =~~rnj

Clij = (f - (1 - q)wj)

o
II

1

.-
r

1

z
-t-2

0 -
n :=

c
:==
z L’

IZ

+

w
c-.

0
■ ✍

mu)
AC
00
L

m

.-

11II II
-1
.s z
[1 [_]

- J
& z
[1 [1

●

Brooks and Motley (cent’d)
Binomial Model

MLE for (N, q, @ - continued from previous slide

L is the likelihood function given below:

—

H Ii (“j) ~ijnij (q -q) ‘ij-n’~
i=lj=l n ij

where

K is the number of test occasions

J is the number of modules in the system

nij is the number of errors observed on the i’th testing o_ccasion
of the j’th module. Note that there is no solution if Nij - nij

becomes negative.

--- .- — — — . . ——

●

●

●

Littlewood-Verral 13ayesian Model

Littlewood’s model, a reformulation of the Jelinski-Moranda model,
postulated that that all errors do not contribute equally to the reliability of a
program. For example, a program with errors in rarely exercised sections of
the code is more reliable than the same program with the same number of
errors in frequently exercised sections of the code.

Littlewood’s model postulates that the error rate, assumed to be a constant
in the Jelinski-Moranda model, should be treated as a random variable.

The Littlewood-Verral model of 1978 attempts to account for error generation
in the correction process by allowing for the probability that the program
could be made less reliable by correcting an error.

Littlewood-Verral (cent’d)
Assumptions:

t

2.

Successive execution times between failures are independent random
variables wit-~.~robability density functions

f(XilZi) = Lie where the xi are the error

Li’s form a sequence of random variables,
parameters cz and ~(i), such that:

rates

each with a gamma distribution of

g(k)i = [~(D] a~i a - ‘ e ‘Y(i)fi

r(u)
~(i) is an increasing function of i that describes the “quality” of the
programmer and the “difficulty” of the task.

Littlewood-Verral (cent’d)

Assumptions (cent’d)

Imposing the constraint P(L~) <x) > P(L(j-1) <x) for any x reflects the
intention to make the program better by correcting errors. It also reflects
the fact that sometimes corrections will make the program worse.

3. The software is operated in a similar manner as the anticipated operational
usage.

u
“*s
o

a
L
L
a)
>

D

73
0
0

[1

0
II

25

II

c
0.-

3.Q

m
U).-
U).—
E

●

Littlewood-Verral (cent’d)
Joint density for the XI’s is given by:

n
n a

a H [~(i)]
flXI, X2, Xn I a, v(i)] = ,

a~!
JJ [X i + y(i)]

For ~, Littlewood and Verral suggest:

‘1

I

● Maximum Likelihood Esti~a&esfor a, Po, and fh are found by evaluating
the !ike!ihood function 4-(q @ PI), which k f(Xl, X, Xn ! a, Po, PI)

0-
(l)

73
“*c
0

■ m

E!61
II

-1
I

8
[.1 L’1

o
II

o
II

c
w“

II

n “–

C w“II.-

II

-1 C&
[-1 c1

+
<@

1

nz
“- <>

c hrII

<z L-
11

-1 (5
[..J [.3

Littlewood-Verrall (cent’d)

Assuming a uniform a priori distribution for a, Bayesian inference gives:

i-

f(Xi I P(), ~*)= ‘y [(y + In(“;(;(i)))i+’ 1-’
X i + ~(i)

where y is the percentage certainty that the failure rate at the i + k’th
error detected is less than a pre-defined target failure rate.

PO and PI can then be found by using MLE techniques.

Other Models

Q ROME AIR DEVELOPMENT CENTER (RADC) MODEL

● PHASE-BASED ERROR DISCOVERY MODELS

RADC Model
● This model yields a prediction of initial fault density based on

the following static characteristics of the software:

A = Application Type (e.g. real time flight control system)

D = Development Environment (characterized by development
methodology, available tools)

“Requirements and Design Representation Metrics”

SA = Anomaly Management, ST= Traceability, SQ = Quality
Review Results

“Software Implementation Metrics”

SL = Language Type, SS = Program Size, SM = Modularity,
SU = Extent of Reuse, SX = Complexity, SR = Standards
Review Results

● Initial Fault Density is given as:

A* D*(SA*ST* SQ)*(SL*SS*SM*SU *SX*SR)

RADC Model (cent’d)

● Numbers for these software characteristics are aiven in
RADC TR-874 71. These numbers are based o; a larae-
scale survey of software development efforts. This is “
therefore an empirical model.

● Unlike the models described in earlier slides, this model can
be used prior to the testing phases of a development effort.
Use of this model is similar to the use of other static,
multivariable estimation models (e.g. COCOMO)

I

RADC Model (cent’d)

● This model also yields an initial failure rate prediction
based on the initial fault density.

LO= F* K*WO w h e r e

I

LO = the initial failure rate

F = linear execution frequency of the program

K = fault exposure ratio (from 1.4x10-7 and 10.6xI 0-7, with
the average being 4.2 x~ 0-7)

WO = number of inherent faults

RADC Model (cent’d)
Moreover, F = R/l where

R = average instruction execution rate

I = number of object instructions

Also, I = L * Q~- where

L = number of source instructions

Q.= code expansion ratio (average value of 4)

Therefore, LO can be expressed as:

(R* K/Qx) * (wO/!S)

All of these an be estimated during requirements analysis,
design, and coding.

Phase-Based Model

● The phase-based model is another approach to predicting
reliability prior to the testing phase. This approach was
developed by John E. Gaffney, Jr. and Charles F. Davis of
the Software Productivity Consortium.

● This is a dynamic model, and makes use of error statistics
obtained during technical reviews of requirements, design,
and source code. It also uses failure history data obtained
during the testing phases.

Phase-Based Model (cent’d)

Model Assumptions

1. The development effort’s current staffing level is directly
related to the number of errors discovered during a
development phase.

2. Error discovery curve is rnonomodal.

3. Code size estimates are available during early phases of a
development effort. The model expects-that error densi
will be expressed in the number of errors per thousand
lines of source code, which means that error found duri
requirements analysis and design will have to be
“normalized”.

ties

Ig

u).-
U3.-
E

u
a)
L73

- -c (Ii
5
u Ci). -0 73

0
a)u)
as
E

a)
Z30
=

z

a)
k
-5

‘5w
c1)m
CGm
a)
u’)mz

CL

-5
% (n.-U

a)U)
8.3
k
3

-e 5
0
CL a)

L

●

<

w
-p

m
m

.

c
a)
2

m
-&
-u
a.)
8
E

●

u“

0U3
--a)

●

3
CDc
(ii
a.)
u)
m

E
o

d=
CD

●

c
m0
m

.
5
u
0
E

‘5

Phase-Based Model (cent’d)

Estimation of number of latent errors

● The number of errors per KSLOC removed through the n’th
phase is:

V~ = E[l - e-Bn2]

● The number of errors remaining in the software is just

Ee ‘9”2

times the number of source line statements, S.

aw

m
Gcd &

cd

g

*S4

*F%
L

*

6ia
&
u
u

Model Concerns

● Accurate Data Collection During Test
● Accurate Operational Profile description during test
● Models are Primarily used during the testing phase, which is late in the

development cycle
● Estimation of parameters is not always possible, and sometimes it is

mathematically intractable.
e Reliable models for multiple systems have not been developed
● No well-established criteria for model selection. A model should:

Give good predictions of future failure behavior

Compute useful quantities

Be simple to use

Be applicable to a wide variety of situations

Be based on sound assumptions

Criteria for Model Selection
● When software reliability models first appeared, it was felt that a process

of refinement would produce “definitive” models that would apply to all
development and test situations.

● Current situation

- Over 40 models have been published in the [iterature.

- Recent studies indicate that the accuracy of models is variable

- Analysis of the particular context in which reliability measurement is to
take place so as to decide a priori which model to use does not seem
possible.

Criteria for Model Selection (cent’d)
Analysis of a model’s predictive quality can help user decide which model(s) to
u s e .

● Simplest question a SRM user can ask is, “How reliable is the software at
this moment?”

● The time to the next failure, Ti, is usually predicted using observed times to
failure tl, tz, ti-1

● In general, predictions of Ti can be made using observed times to failure b,
tz,ti-K. K>o

The results of predictions made for different values of K can then be
compared. If a model produced “self-consistent” results for differing va
of K, this indicates that its use is appropriate for the data on which the
particular predictions were made.

ues

HOWEVER, THIS PROVIDES NO GUARANTEE THAT THE
PREDICTIONS ARE CLOSE TO THE TRUTH.

Criteria for IiVlodell Selection (cent’d)
Pre-quential likelihood

●

●

●

The pdf of Fi(t) for Ti is based on observations
f!(t), is ~Fi(t)/iM.

tl, t2, ..* , ti-1. The Pdf of Fi(t),

For one-step ahead predictions of Tj+l, Tj+2, Tj+n, the prequential
likelihood is:

]+n~

P L n = ~ fi (ti)
i=j+l

Two prediction systems, A and B, can be evaluated by finding the
prequential likelihood ratio:

j+n

II ~?(ti)

pLRn ni~~~’

II ‘?i~ti)
i=j+l

If PLRn ~ 00 as n + 00, then B is discarded in favor of A.

w

c1)
CL
Em

c
Q

■ ■

c)
a)
a)

co

L
o

x
IlDl191
Zs0
0

MS
● -

cl)
x

CG

Criteria for Model Selection (cent’d)
The “u-plot” can be used to assess the predictive quality of a model

●

●

Given a predictor, Fi~), that estimates the probability that the time to the
next failure is less than t. Consider the sequence

Ui =
Fi(ti)

--

where each Ui is a probability in~egral transform of the obsewed ti using the
previously calculated predictor Fi based upon tl, b, ti-1

[f each ~ were identical to the true, but hidden, Fi, then the Ui would be
realizations of independent random variables with a uniform distribution in
[0, 1].

The problem then reduces to seeing how closely the sequence {Ui}

resembles a random sample from [0, 1]

Criteria for IIVlodell Selection -
U-Plots for JM and II-V Models

. I

0.s

D
o 0.9 1-

Fig. 4. LV, JM u-plots. data of Table 1. Steps omitted for clarity. Note
that these am repducd from !ine-printer plots and do no(correspond
exactly to tme plot.

Criteria for Model Selection (cent’d)
The y-plot

● Temporal ordering is not shown in a u-plot. The y-plot addresses this
deficiency

● To generate a y-plot, the following steps are taken:

- Compute the sequence of {Ui}

- For each Ui, compute xi= h(l - Oi)

i

Obtain yi by computing ~xj~xj, i < m
1 1

If the {Ui} really do form a sequence of independent random variab
[0, 1], the Slope of the plotted Yi will be constant

es in

al)
co

(/3

>

ml
73s
CG

0- ,

●

*
“.

● . .
.,

. . . .
. 0 ,

. .
. .

.
.

. .
.

.
.

●

.
. .
‘.
“.

.
.

*5“**,.., ● :,
●

“**
:.

.0

●
. .

●
●

L

aco
a)
73
0

C(S
● ✍

L
a)
L

c)
5

-6—
n-

(u

c.—
u)
a)

●

ISSRE’93 Tutorial

Software Reliability Modeling Techniques and Tools

Part IV: Linear Combination Modeling Approach

1.
2.
3.

—

Application procedure
The linear combination rnodeIs
Model application results

1 btal time: 20 minutes

A PROCEDURE TO APPLY
SOFTWARE RELIABILITY MODELS

(1) Examine model assumptions and comtrairlts

(2) Identify model selection criteria

(3) Select a candidate set of models

(4) Collect data for model applications

(5) Choose procedure to apply models (use of database)

(6) Identify software tools

(7) Select best models

(8) Tailor to the special environment (e.g., JPL)

._

. .

[

.—

.

.-

. .

.-

..—

.

_.. .
1

_ _.. —

. . .

.—

_.

.—

CJ
.

m r. u-l lf)

o

●

e

ProbIems in Software ReIiabiIity IWodeIing

Over 40 modek have been published in the literature.

Significant differences exkt among the performance of these his-
torical models.

It was felt that a process of refinement wouId produce a
“definitive” rnodeI.

Software reliability measurers’ fantasy: one modeI for alI cases.

The reality is: no single model could be determined a priori as the
best model during measurement.

z
w
w
z
w
02
z

Ju
w
a

‘.
.

...

5 ““’
F
~.

“.
$ ‘“..,
CL

.

I I I

....
:....
:..
:
“,

. “.
. .

. “.. .,.
“. “..

“.
“.

— - T — - - - r - - - T - - r - - - r - - -

A New Approach in Measuring Software ReIiabiIity

(1)

(2)

(3)

(4)

Identify a basic set of models (called

Select models that tend to cancel out

component models).

in their biased predictions.

Keep track of the software the software failure data with all the com-
ponent models.

AppIy certain criteria to weigh the selected component models and
form one or several Linear Combination Models for final predictions.

A Set of Linear Combination Models

Selected component models: GO, MO, W

(1) E L C - E q la” ly-Weighted Linear Combination Model
1

1
ELC=~GO+–

1
3 3

NIO+-LV
3

(2) MLC – Median-Oriented Linear Combination Model

(3) ULC – Unequally-Weighted

1

ULC=; O+: M+;
6 6 6

Linear Combination ModeI

P 0: optimistic M: median

(4) DLC – DvnamicaHv-Weighted Linear Combination Modeld d

Weighings are determined bv dynamically calculating thed d

P: ~essimistic
A

posterior “pre-
quential Likelihood” of each model as a meta-predictor.

o

a)

● A
44

U3

5L
2

o

Data Set 1: Model Comparisons for the Voyager Project

I Voyager Flight Software (133 data points/starting data-2) I
Model I JM GO MO I)IJ LIvl LV ELC ULC MLC DLC ,

I -894.7
Accumcy -573.7 -571.5 -586.6 -829.9 -549.1 -554.0 -557.8 -570.3 -543.1

(10) (7) (6) (8) (9) (2) (3) (4) (5) (1)

Bias
:2994 .2849 .2849 .2703 . 2 9 9 4 .0793 .2084 .2438 .2849 .2078

(9) (6) (6) . . (5) (9) (1) (3) (4) (6) (2)

Trend
.0995 .0965 .0957 .2551 .0994 .0876 .0872 .0951 .0962 .0866

(9) (7) (5) (10) (8) (3) (2) (4) (6) (1)
I m

Noise
13.81 9.225 8.402 ~ 24.51 15.15 12.64 9.129 17.47

(9) (4) (3) (1) (9) (8) (6) (5) (2) (7)

Rank (10) (7) (6) I (7) (9) (2) (2) (4) (5) (1)

RECOMMENDED MODELS: 1. DLC 2. ELC 2. LV

Data Set 2: Model Comparisons for the Galileo Flight Project

Galileo Flight Software (224 data points/starting data–24)

Model JM GO MO DU LM LV ELC ULC .MLC DLC

-1074 -1075 -1078 -1098 -1074 -1051 -1019 -1035 -1077 -984.7
Accuracy

(5) (7) (9) (10) (5) (4) (2) (3) (8) (1)
i .3378

Bias
.3378 .3379 .1944 .3382 .2592 .1991 .2569 .3378 .2159

(6) (6) (9) -- (1) (10) (5) ~ (2) (4) (6) (3)

Trend I .4952 .4954 .5041 .4618 .4954 .1082 .2781 .3271 .5017 .2484
(6) (7) (lo) (5) (7) (1) (3) (4) (9) (2)

Noise
2.607 2.593 2.395 4.541 2.624 23.33 17.72 13.80 2.584 23.96

(4) (3) (1) (6) (5) (9) (8) (7) (2) (10)

Rank (5) (7) (10) (6) (9) (4) (1) (3) (8) (2)

RECOINEMENDED NIODELS: 1. ELC 2. DLC 3. ULC

Data Set 3: Model Comparisons for the Galileo CDS Subsvstem
w

Galileo CDS FIight Software (358 data points/starting data-152)

Model JM GO MO DU LM LV ELC ULC MLC DLC

Accuracy
-643.0 -639.3 -681.1 -728.5 .643.o -612.3 -618.7 -626.9 -681.1 -606.1

(6) (5) (8) (lo) (6) , (2) (3) (4) (8) (1)
t {

Bias
.1783 .1783 .1700 .1748 .1784 .2581 .1732 .1599 .1700 .1845

(6) (6) (2) (5) (8) (10) (4) (1) (2) (9)

Trend
.3450 .3408 .4262 .4282 .3450 .2426 .2855 .3072 .4261 .2618

(6) (5) (9) , (10) (6) (1) (3) (4) (8) (2)

N’oise
4.042 3.908 2.673 2.287 4.042 2.564 2.853 2.958 2.672 11.19

(8) (7) (4) (1) (8) (2) (5) (6) (3) (lo)

Rank (8) (6) (6) (8) (10) (1) (1) (1) (4) (5)

RECON13fElNDED lvlODELS: 1. LV 1. ELC 1. ULC

Data Set 4: Model Comparisons for the NlageIIan Project

lMageLlan Flight Software (197 data points/starting data-50)

Model JM GO MO I)IJ I LM Lv ELC ULC NILC DLC

Accuracy ~ -627.1 -627.1 -627.1 -616.0 I -627.1 -622.9 -619.1 -622.3 -627.1 -609.2
(6) (6) (6) (2) I (6) (5) (3) (4) (6) (1)

Bias
.2968 .2968 .2969 .1858 . 2 9 6 9 .3483 .2140 .2461 .2968 .2396

I (6) (6) (8) -- (1) (8) (10) (2) (4) (5) (3)

Trend
.2399 .2399 .2399 .2180 .2399 .1429 I .1400 .1871 .2399 .1049

(6) (6) (6) (5) (6) (2) (1) (4) (6) (3)

Noise
1.007 1.007 1.007 2.003 ‘ 1.009 5.563 4.260 3.363 1.007 <.982

(1) (1) (1) (6) (5) (lo) (8) (7) (1) (9)

Rank (5) (5) (8) (1) (9) (10) (1) (5) (4) (3)

RECOIMLMENDED MODELS: 1. DU 1. ELC 3. DLC

Data Set 5: Model Comparisons for the Alaska SAR Project

r

I Model II JM

/ -915.7
Accuracy 11

~

(2)

I Bias
.3023

I (1)

+

I .06(-)6
Trend

(4)

Noise
1.587

1 (4),{

Rank II O)

AIaska SAR Ground Software (367 data points/starting data-67)

GO I MO I DU 1 LM I LV II ELC I ULC I MLC
!) II I

-915.8 I -915.7 -925.5 , -915.7 -920.5 I -916.2 -915.9 -915.7
(6) (2) (10) (2) , (9) ~ (8) (7) (2)

.3023 .3023 .4249 i .3023 .3672 .3434 .3209 .3023
(1) ~ (1) -~ (lo) ~ (1) ~ (9) (7) (6) (1)

.0615 .0620 I .0918 1 .0606 .1009 .0586 .0528 .0620
(6) (7) (9) I (4) (lo) (3) (1) (7)

1.540 1.395 1.650 1.589 3.189 2.220 1.853 1.413
(3) (1) (6) (5) (lo) (9) (7) (2)

(5) (1) (9) (3) (lo) (8) (7) (3)

DLC

-914.8
(~)

.3468
(8)

.0569
(2)

1.949
(8)

(6)

Recommended MODELS: 1. J~M 1. MO

k’

Overall ModeI Comparisons Using All Four Criteria

Summary of Model Ranking for Each Data by All Four Criteria I
Model II J.M GO Mo DU LM Lv ELC ULC MLC DLC

Voyager (lo) (7) (6) (7) (9) (2) (2) (4) (5) (1)

GaliIeo (5) (7) (~o) (6) , 0) (4) (1) (3) (8) (2)

Galileo CDS I ‘ (8) (6) (6) (8) (lo) (1) (1) (1) (4) (5)

MageIkm (5) (5) (8) (1) (9) (10) (1) (5) (4) (3)

Alaska SAR (1) (5) (1) (9) (3) (10) “ (8) (7) (3) (6)

Sum of Rank 29 30 31 31 40 27 13 20 24 17
“Handicap” +9 +10 +11 +11 +20 +7 -7 0 M -3

TotaI Rank (6) (7) (8) (s) (lo) (5) / (1) (3) (4) (2)I

OveraII ModeI Comparisons bv the Accuracv Measureu w

I Summary of Model Ranking for Each Data Using the Accuracy Measure I
ModeI JM GO MO DU LIM LV ELC ULC MLC DLC

Voyager (10) (7) (6) (8) I (9) (2) I (3) (4) (5) (1)

GaIiIeo (5) (7) (9) (lo) (5) (4) (2) (3) (8) (1)

Galileo CDS (6) (5) (8) (lo) (6) (2) (3) (4) (8) (1)

Magelhtn (6) (6) 16) I (2) , (6) (5) (3) (4) (6) (1)

Alaska SAR (2) (6) (2) (lo) I (2) (9) (8) (7) (2) (1)

Sum of Rank 29 31 31 40 2$ 22 19 I 22 29 5

“Handicap” i +9 +11 +11 +20 +8 +2 -1 +2 +9 -15

TotaI Rank (6) (8) (8) (lo) (5) (3) j (2) (3) (6) (1) ,

Overall Model Comparisons Using All Four Criteria

Summary of Model Ranking for Each Data by AH Four Criteria

ModeI II JM I GO I MO I D~T I LAM I Lv II ELC I ULC I MLC I DLC I

Data 1 in RADC II (10) I (9) I (1) I (6) I (8) I (6) II (4) i (2) I (3) I (5) I
Data 2 in RADC li (9) I (10 I (6) I (7) I (8) I (1) II (4) I (5) I (2) I (2) i

Data 3 in RADC !~ (6) I (8) /- (4) I (9) I (9)- 1 (6) II (4) I (3) I (2) I (1) ~
Voyager 1[(10) 1 (7) I (6) I (7) I (9) I (2) II (2) 1 (4) I (5) I (1) ~
Galileo II (5) I (7) I (10) I (6) i (9) I (4) II (1) I (3) I (0 I (2) i
GaIileo CDS II (8) I (6) I (6) I (8) I (10) I (1) II (1) I (1) I (4) I (5) i

lMageIkm 1 (5) I (5) I (8) I ,(1) I (9) I (lo) \[(1) I (5) I (4) I (3) I
Alaska SAR II (1) I (5) I (1) I (9) I (3) I (lo) II (8) I (7) I (3) I (6) I
Sum of Rank II 54157142153165 [4011 25130 I 31 I 25 I
“Handicap” + 2 2 +25 +10 +21 +33 +8 -7 - 2 -1 -7

!
Total Rank II (8) (9) (6) (7) \ (lo) (5) (1) (3) (4) (1)

Overall Model Comparisons bv the Accuracv Measureu w

I Summary of Model Ranking for Each Data Using the Accuracy Measure I
I

Model JM GO Mo DU LM LV ELC ULC MLC DLC

Data 1 in RADC I (lo) (9) (2) (8) (6) (7) (5) (4) (3) (1)

Data 2 in RADC I (7) (9) (4) (lo) (7) (1) (4) (4) (3) (2)
4

Data 3 in RADC (4) (7) (4) (lo) (8) (9) (2) (2) (4) (1) /

Voyager [(10) (7) (6) (8) (9) (2) (3) (4) (5) (1) !
Galileo ii (5) (7) (9) (lo) (5) (4) (2) (3) (8) (1)

Galileo CDS (6) (5) (8) (lo) (6) (2) (3) (4) (8) (1)

Magelkm (6) (6) (6) (2) (6) (5) (3) (4) (6) (1) [

Alaska SAR II (2) (6) (2) (lo) (2) (9) (8) (7) (2) (1) I

Sum of Rank 50 56 41 68 49 39 30 32 39 9

“Handicap” +18 +24 +9 +36 +17 +7 -2 0 +7 -23

ToM Rank ~ (8) (9) (6) (lo) I (7) (4) (2) (3) (4) (1)

GA!_H_Eo CDS
Cumulative Failures

500 ‘

3(IG -

-
/-2CXI -

152 ----

v
--- ---

J-J1 cm
+

-d--
I

I
I

7I

0k I
1 I f I

0 . 4 ‘ .777.’8 ‘ I [I

1.2 1.6
(Thouscnds)

2:0 2 . 4 2 . 5

Cumulative Test !-but-s

!j

0.0

w)
c1
o
L>
L.I.I
--l-—.
- J
<
c!)

0

8

.———.

\s-——

. .

\

N

c1
0

=+.
0

0
CJ

0
c1F-1

*

Summarv of Long-Term Predictions
w

I Summary of Model Ranking for Long-Term Predictions Using iM.S.E.

GO MO
Data 1 in RADC I 2117(5) I 687.4(4)

Data 2 in RADC I 1455(5) 1 1421(4)

Data 3 in RADC ~ 480.0(2) 1 253.2(1)

Voyater I 1089(4) ~ 782.9(2)

GaliIeo I 4368(4) 1 4370(5)

GaIiIeo CDS 4712(5) I 3073(3)

kfagellan 3247(4) ~ 3248(5)

AIaska SAR 60.22(3) ! 60.12(1)

Sum of MSES 17528.5 13896.6

Sum of Ranks ! (32) I (25)

Overd Rank I (5) i (4)

LV ELC DLC 1
567.7(3) II 266.7(2) I 169.7(1) I
246.1(1) 930.5(2) 955.7(3)

2067(5) ~ 745.5(3) 779.8(4) ,

5283(5) 130.1(1) 876.7(3)

539.3(1) 2171(3) 1791(2)

43 18(4) 1322(2) 1141(1)

219.5(1) 1684(3) 1354(2)

104.45(5) II 68.44(4) I 60.15(2) I
13345.0 Ii 7317.3 I 7128.3 \

(25) II (20) I (18)

(3) !1 (2) I (1) I

Possible Extensions of the New Approach

(1) Apply models other than GO, MO, and LV as component models.

(2) Apply more than three component models.

(3) A p p l y
mode~s.

other meta-predictors for weight assignments in DLC-type

(4) Apply user-determined weighting
and engineering judgments.

(5)

schemes, subject to project criteria

Apply combination models as component models for a hybrid combi-
nation.

mm. .

v)

cm
3

12

M)

C6
● -
a)

PI

Ii!
V3

●

●

●

Software Reliability Measurement TOOIS

AT&T Tool Chest (RELTAB, RELPLOT, RELSIM)

– John Mttsa of AT&T

Software Reliability lModeling Programs (SRMP)

– Bev Littlewood of City University, London

Statistical Modeling and Estimation of Reliability Functions for Software
(SMERFS)

– William Farr of Naval Surface Wtiare Center

Computer-Aided Software Reliability Estimation Tool (CASRE)

– Allen Nikora of JPL & Michael R. Lvu of BeHcored

SMERFS Main Features

● ~Multiple Models (1 O)

● On-1ine .Model Description Manual.-

● Two Parameter Estimation lMethods

— Least Square Method

— lMaximum Likelihood Method

● Main Goodness-of-fit Criteria – the Chi-square Statistic

● SimpIe Plots

‘cds

C6

o
0
b

cdsn

v)
L(

CA

6’
w

&
a)

Q
● d

I I I I

a)

‘%
z
o

e a

“a
● -

cd
%n

a

bJ3

6’

● Hn

CASRE High-LeveI Architecture

To screen, prinfer, or disk

i

I

T

Fal!ure Da!a

1A
‘ ‘:cy_

!vlodek
(!n:er?d!ure t!mes.

Execution
.,

I k------- .---,

, i

F-bid-l .-KE!im-
II

I Data 1 i :
VI Transformation y:

t I r f

91as (u;
Trend (y!)

Senslt/v!t

7

to Noise

k
Model I

Evafua!ions !

I

Componen! rnoc!e!s, - - - -1
weigh!ing sc?ewes

I
I

T
To screen, pri~?er, or dkk

Trend (yl)

I

■ ✍

LL

u
s

m-

a
.?2 ‘

~
■ ✍

LL
m
iii
c1
a)

$.-
Ca

IA
m
m
s*-
c
a)
CL
0

.

CASRE Graphics Display Window

.

j$$l .50000000E+OI 5 6 1

&$77 .7 0000 OOOE+O1 56 I :
:: ,.. :,:;+;,~::,. i
::

~!:
17 ..:
;.. +,.
.
!: ;,:
:: ;.!... <
:: . ..1
$.:
,-. ,

.,. , .,.,,,,,.,,, ., ,

Saving the Work Space Contents

L p ?A;:.:..>,,.:,,Lz,.<..:,:<<,:,,>,:<:<<<<<<.. <<.:,.,.,.

I

@
$

Directoy is: ~
f:\... \casre\working \

,:
f

File Name:
q

/fcdat i]

Directories @
&

CASRE Edit Menu and Submenu of External A@kati~?-\s
#

/ NE03
~ NEU6
; NE08
, NEI19

NE?8 : NE31 ~ NE44 : NE58
NE19 ~ NE32 ; NE45 ~ NE59
NE20 ~ NE33 NE46 NEGU
NE21 I NE34 ~ NE47 ~ Write

NE1O I

NE22 ~ NE35 i NE48 NE61
‘ NEII

~~lz

NE13
NE14
NE15
NE16

NE23
NE24
NE25
NE26
NE27
NE28
NE29

N E 3 6 : NE49
NE37 ~ N E 5 0
NE38 ‘ NE51
NE39

I
NE52

~~~() ~ N E 5 3

NE47 ~ NE55

NE07
NE54
Norton Editor
NE04
Word Perfect
NEO1

NE42 ~ NE56 ! NE(I2



Transformations and Smoothing Operations

FJower...

Logarithmic...

Exportentiation...

Smoothing

Harm window

00E+O1 561 1



Transformations and Smoothing Operations (cent’d)

— --- 1,:-..:.J



Model Selection and Definition



o

L

0
u)
Q)

ti

(/)



Defining a Statically-Weighted Combination

Statically Weighted Linear Model Combination

Combination Name ~ SLC_50

Available Models

DLC/S/5  1
Gcomct;c
Muss Basic
SLC_l 1
SLC_l 2
SLC_l 8
SLC_l 9
SLC_20
SLC 21

L@ Relative
O Normalized

Current Combination
lDLC_50 1
\ Littlewood-Verrall  3
Muss-Okumoto 2

lNHpp~BEl 1

Relative Weight



0
Q
E0
c)
m
c

. . . . . . . . ..- —-... --------  _____ ._. ____  . ..-. ____ _________  ._.. ., . . . . . . . . . . .___ +__ ,---- .. ---- . . ..A _ . . . . . . . ..-

c m ,--
0.= .E 1-u

u $?;= ---
03 &,

$o@



Using Applicability Values to Weight Components

Avaifab!c  Modef~
&ook@Motiey  Bin 1

~f+~p (lnte~l~]
RLc_T 7
RLC_l 8 j
RLc_31
s~ne!dewlnd

I

sLC_I 3
SLC_T5
SLC_T 6 I

~‘Yatnada  S-Shaped

+v*G:-*xq>G;;\v,\:$*;  :;.Ly.x<<  . . . .

Model EvaIuation~ased  Lirtear  Model  Combination



Adding and Removing External Applications

Hle Edit  Filters  ~odel setup Help
. . . . . . . . . . . . . . . . . . . . .



o

(ns
o

x
w

u)
s

●  -
>
0

E
a)



o
u
c

s

L

0
Q9
-1
u
x

<

:
4

—..

-?T



o
ii:
3
0

u)
■  -n
U)
u
E
Q

c!)



Graphics Display Window “Display” Menu

E

I Failure frequency

j
Iest interval lengths
Cumulative failures

i ! i?,e)kbility %!dion



h
●  -

‘a
c

aJ
d)
c)

ml
-. —

. —

L ..3



m
s

●  -
m
u
u)
m

●  -
%

a

n.
m

Ln
LA
N

—.

u

&

o

r
m

Im



A c k n o w l e d g e m e n t s :

The research presented in this tutorial was done at the
University of lowa under a faculty starting fund, at Bellcore, and
at the Jet Propulsion I,aboratory, California Institute of
Technology, under a NASA contract through the Director’s
Discretionary Fund. CASRE’S implementation is being supported by
the Air Force Operational Test and Evaluation Center under Task
Order RE-182, Amendment 655, Proposal 80-3417. We wish to thank
Dr. William Farr of the Naval Surface Warfare Center for allowing
SMERFS to be included in this tutorial . We also wish to thank Dr.
Bev I,ittlewood of the City University of London for allowing SRMP
to be included in this tutorial . Finally, we express our
appreciation to A1’&T for allowing the AT&T Toolkit to be included
in this tutorial .


